Releasing and Patching ITOS

Integrated Test & Operations System
Release 6-x, $Date: 2006/03/21 16:07:25 $




Copyright 1999-2006, United States Government as represented by the
Administrator of the National Aeronautics and Space Administration.
No copyright is claimed in the United States under Title 17,

U.S. Code.

This software and documentation are controlled exports and may only be
released to U.S. Citizens and appropriate Permanent Residents in the
United States. If you have any questions with respect to this
constraint contact the GSFC center export administrator,
<Thomas.R.Weisz@nasa.gov>.

This product contains software from the Integrated Test and Operations
System (ITOS), a satellite ground data system developed at the Goddard
Space Flight Center in Greenbelt MD. See <http://itos.gsfc.nasa.gov/>
or e-mail <itos@itos.gsfc.nasa.gov> for additional information.

You may use this software for any purpose provided you agree to the

following terms and conditions:

1. Redistributions of source code must retain the above copyright
notice and this list of conditions.

2. Redistributions in binary form must reproduce the above copyright
notice and this list of conditions in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgement:

This product contains software from the Integrated Test and Operations

System (ITOS), a satellite ground data system developed at the Goddard

Space Flight Center in Greenbelt MD.

This software is provided ‘‘as is’’ without any warranty of any kind,
either express, implied, or statutory, including, but not limited to,
any warranty that the software will conform to specification, any
implied warranties of merchantability, fitness for a particular
purpose, and freedom from infringement and any warranty that the
documentation will conform to their program or will be error free.

In no event shall NASA be liable for any damages, including, but not
limited to, direct, indirect, special or consequential damages,
arising out of, resulting from, or in any way connected with this
software, whether or not based upon warranty, contract, tort, or
otherwise, whether or not injury was sustained by persons or property
or otherwise, and whether or not loss was sustained from or arose out
of the results of, or use of, their software or services provided
hereunder.



Chapter 1: Releasing ITOS 1

1 Releasing ITOS

Here are the steps in a release:
Make sure everyone knows a release is about to occur.
Make sure everything is checked in.
Update the release notes.
Tag the release.
Save the old ‘/home/itos’.
Export into ‘/home/itos/src’.
Build and test in ‘/home/itos’.
Apply last minute patches.

© PN wN e

Package the release.
Install the release.

—
= O

Configure the system.

1.1 Make sure everyone knows a release is about to occur

This is step is pretty simple — just tell the developers that a release is about to occur
and that they shouldn’t commit any more changes without your knowlege and consent.

The idea is that you don’t want anything to change out from underneath you!

BTW, You might want to remind everyone that the release process may take several
hours.

1.2 Make sure everything is checked in

When you’re telling the developers the release is about to occur, ask them to make
sure they’ve committed everything they intend to have released. To check for uncommitted
changes:

In csh do

% cd /home/tcw/src
% cvs -n update |& grep "M
or in sh do
$ cd /home/tcw/src
$ cvs -n update 2>&1 | grep "M

The ‘-n’ option tells cvs to only go through the motions and not to actually update
anything; the ‘grep "M’ throws out all output except lines beginning with capital M — these
lines identify files that are under CVS control and have been modified in ‘/home/tcw’.

You're looking for lines like

M lib/uppercase.c
M olstol/olstol.h
Each of these files has been modified in ‘/home/tcw’ — you’ll have to resolve each of these

one way or another. The resolution will probably be to either delete the file or to commit
the file.

$Date: 2006/03/21 16:07:25 $



Chapter 1: Releasing ITOS 2

1.3 Update the release notes

Finalize the release documentation in src/doc/itos-relnotes.texi

1.4 Tag the release

Assuming the stuff in ‘/home/itos’ looks OK, now’s the time to tag the release.
To see the names of previous releases, do something like:

$ cd “/tcw/src
$ cvs log Makefile | head -15

RCS file: /home/tcw/cvs/src/Makefile,v

Working file: Makefile

head: 2.6

branch:

locks: strict

access list:

symbolic names:
Release_6-2: 2.6
Build_6-1: 2.6
trace-inst-tst: 2.5
Demo: 2.5
Release_6-0_alpha: 2.4
start: 1.1.1.1
tew: 1.1.1

$

This shows that ‘src/Makefile’ has previously been tagged ‘Release_6-2’, ‘Build_6-1’,
‘trace-inst-tst’, ‘Demo’, etc.

To tag the release do (assumes the tag ‘Release_N-M’):
$ cvs rtag Release_N-M src

It doesn’t matter what directory you’re in when you do this as long as your CVSROOT
environment variable is set to ‘cvsserverhost:/home/cvs/itos’:
$ echo $CVSROOT
cvsserverhost:/home/cvs/itos

where ‘cvsserverhost’ is the development machine here in the ITOS Group. Tagging
the release will take a while.

1.5 Save the old /home/itos

There’s a chance — even though we’ve exhaustively tested everything — that the new
release simply won’t work. In that case, we’ll need to revert back to the old system. So,
before exporting the new release into ‘/home/itos’, move the old ‘/home/itos’ out of the
way. This way, to restore the old system all you have to do is move it back.

As root on the development system, in ‘/export/home’, run:

$Date: 2006/03/21 16:07:25 $



Chapter 1: Releasing ITOS 3

# mv itos itos.6-3 # move the old usr.tcw
# mkdir itos # make the new usr.tcw
# chown me:devel itos # make it writeable by us

where you substitute the previous release number for ‘6-3’, and your user name for ‘me’.
If your umask is 022, also run "chmod 775 itos" so the group can write to it.

This proceedure is followed because ‘/home/itos’ is an automounter mount point, so
it’s not OK to rename ‘/home/itos’. Instead, you've got to figure out the real name of the
directory seen at ‘/home/itos’. Our ‘/home/itos’ usually is mounted by the automounter
from the development system’s ‘/export/home/itos’.

1.6 Export into /home/itos/src

This assumes the new release is ‘Release_6-4’:

$ cd /home/itos
$ cvs export -r Release_6-4 src

1.7 Build and test in /home/itos

Make sure that the correct Java is in your path (do ‘java -version’) and that
‘/usr/local/javalibs’ contains ‘jcbwt220.jar’ and ‘jcchartItos. jar’. Then do:

$ umask 002
$ cd /home/itos/src
$ ./bootstrap
$ ./configure -prefix=/home/itos
$ make install >install.log 2>&1
(The ‘-prefix’ is really only needed on FreeBSD.)

Now run release test on the newly built release.

1.8 Apply last minute patches

Although it’s never supposed to happen, occasionally this last little bit of testing uncovers
a bug. You’d probably like to fix the bug and jam it into the release. Here’s how:

1. Fix the bug. Keep track of all source file that changed.
2. Re-tag those source files. For example, if ‘src/olstol/stProc.c’ had the last minute
bug, you'd:
$cvs rtag -F Release_6-3 src/olstol/stProc.c
(The ‘-F’ option tells CVS to overwrite the existing tag).
3. Re-export the source files into ‘/home/itos/src’. Continuing the above example:
$ cd /home/itos
$ rm src/olstol/stProc.c
$ cvs export -r Release_6-3 src/olstol/stProc.c
4. Re-make whatever needs to be remade. The simplest way is to:
$ cd /home/itos/src
$ make install

$Date: 2006/03/21 16:07:25 $



Chapter 1: Releasing ITOS 4

1.9 Package the release

On the development machine, make the version file and the release tarfile and copy the
tarfile to the distribution server:
$ cd /home/itos
$ echo "Release 6-2 for sparc-Sun0S-5.6" >Version
$ mv src .src
$ tar zcf itos_6-2_sparc-Sun0S-5.6.tar.gz *
$ mv .src src
$ scp itos_6-2_sparc-Sun0S-5.6.tar.gz itos: “ftp/private/...
where ‘6-2’ is the ITOS release number, ‘sparc’ is the processor type (uname -p), ‘Sun0S’
is the operating system (uname -s), and ‘6.6’ is the OS release number (uname -r) for which
the ITOS was compiled. You can drop the ‘RELEASE’ from the FreeBSD release number.
Note that if we build the system specifically for the 64-bit UltraSPARC processor (that
is, so it won’t run on pre-V-9 SPARC chips), then replace the generic ‘sparc’ (uname -p)
with the word ‘ultrasparc’.
Now make the appropriate package:

1.9.1 Make the Source Tarball

On one of the development machines, make the source tarball:
$ cd /home/itos/src
$ make dist >dist.log 2>&1
$ mv itos-6.2.tar.gz ..
$ scp ../itos_6.2.tar.gz itos: " ftp...

1.9.2 Make a Solaris Package

On the Solaris development systems, make a ‘pkginfo’ file containing the following lines.
Modify version information as appropriate.
PKG="ITOS"
NAME="Integrated Test & Operations System Release 6-2"
VERSION="6.2"
ARCH="sparc"
CATEGORY="utility"
BASEDIR="/home/itos"
DESC="ITOS is software for controlling and monitoring spacecraft or anything else that
VENDOR="NASA/GSFC"
EMAIL="itos@Qitos.gsfc.nasa.gov"
Now make a Solaris package of the release:
$ cd /home/itos
$ tar ztf itos_6-2_sparc-Sun0S-5.6.tar.gz | pkgproto >proto
$ xemacs proto
$ pkgmk -o -r /home/itos -d . -f proto
When you edit the ‘proto’ file, add as the first line ‘i pkginfo’, and change all 644
modes to 664 and all 755 modes to 775. The result of all this is a directory called
‘/home/itos/IT0S’. Create another tarball of this and copy it to the FTP server:

$Date: 2006/03/21 16:07:25 $



Chapter 1: Releasing ITOS 5

$ tar zcf itos_6-2_sparc-Sun0S-5.6-pkg.tgz ITOS
$ scp itos_6-2_sparc-Sun0S-5.6-pkg.tgz itos: “ftp/pub/itos/Release_6-2

Use the ‘. tgz’ extension like in FreeBSD to help further differentiate the package tarball
from the from the other one.

1.9.3 Make a Red Hat Linux Package

On the Linux development system, in ‘/home/itos’, make an ‘rpmspec’ file containing
the following, with the version number updated:

Summary: Spacecraft ground data system core

Name: ITOS

Version: 6.2

Release: 1

Copyright: Copyright 1999, 2000, 2001, 2002, United States Government
Group: Applications

Source: itos@itos.gsfc.nasa.gov

URL: http://itos.gsfc.nasa.gov/

Vendor: NASA/GSFC Code 584

%description

The Integrated Test and Operations System (IT0S) is software for
controlling and monitoring spacecraft or anything else that produces
telemetry and/or accepts commands.

It was developed at the Goddard Space Flight Center and, as of this
writing, is being used on 9 flight projects, including six of the
seven Small Explorers (SAMPEX, FAST, SWAS, TRACE, WIRE, HESSI), the
Ultra-Long Duration Balloon (ULDB) project, Triana, and Swift. It
also was used on the shuttle-launched Spartan 201-05 mission carried
aboard STS-95.

hprep

%build

%install

%files
/home/itos/bin
/home/itos/classes
/home/itos/dbx
/home/itos/htdocs
/home/itos/1lib
/home/itos/man
/home/itos/pages
/home/itos/procs
/home/itos/tcvol2
/home/itos/Version
/home/itos/Xdefaults

Now make an RPM package:

$Date: 2006/03/21 16:07:25 $



Chapter 1: Releasing ITOS 6

$ cd /home/itos

$ rpm -bb rpmspec

$ mv /usr/src/redhat/RPMS/i386/IT0S-7.1-1.rpm .
To install the package run

$ rpm -i -nodeps ITOS-7.1-1.rpm
1.9.4 Make a FreeBSD Package

On the FreeBSD development system, in ‘/home/itos’, make a ‘pkglist’ file as follows:
$ cd /home/itos
$ rm /export/tmp/*
$ mv src itos_6-2_i386-FreeBSD-7.2.tar.gz /export/tmp
$ find . -type £ -0 -type 1 >pkglist
$ emacs pkglist
$ mv /export/tmp/* .
When editing the ‘pkglist’ file, remove the leading ./’ from each line, and add the line
@cwd /home/itos
as the first line in the file.

Create a ‘comment’ file with the following contents, updating the release number:
Integrated Test & Operations System (ITOS) Release 6-2
Create a ‘descr’ file with the following, updated as necessary:

The Integrated Test and Operations System (ITOS) is software for
controlling and monitoring spacecraft or anything else that produces
telemetry and/or accepts commands.

It was developed at the Goddard Space Flight Center and, as of this
writing, is being used on 9 flight projects, including six of the
seven Small Explorers (SAMPEX, FAST, SWAS, TRACE, WIRE, HESSI), the
Ultra-Long Duration Balloon (ULDB) project, Triana, and Swift. It
also was used on the shuttle-launched Spartan 201-05 mission carried
aboard STS-95.
Finally, create the package:
$ pkg_create -c comment -d descr -f pkglist itos_6-2_i386-FreeBSD-4.4-pkg
The result is a file called ‘itos_6-2_1386-FreeBSD-4.4-pkg.tgz’, which is a package
which can be installed with the pkg_add command.

1.10 Install the release

ITOS packages install in ‘/home/itos’. ITOS tarballs, obviously, can be installed any-
where. Before installing ITOS, be sure to remove the old installation or move it out of
the way. If you are installing in an NFS mounted, but sure that directory is empty before
performing the installation.

Choose from the following for instructions on installing ITOS on your platform:

Solaris package

$Date: 2006/03/21 16:07:25 $



Chapter 1: Releasing ITOS 7

tar zxpf itos_7-1_i386-FreeBSD-4.4-pkg.tgz
pkgadd -d . ITOS

Red Hat Linux package
rpm -i --nodeps IT0S-7.1-1.i386.rpm

FreeBSD package
pkg_add itos_7-1_i386-FreeBSD-4.4-pkg.tgz

Release tarball
cd /home/itos
tar zxpf itos_7-1_sparc-Sun0S-5.7.tar.gz

Source tarball
tar zxpf itos-7.1.tar.gz

On ITOS build machines, the ITOS directory, ‘/home/itos’, is mounted from
‘/export/home/itos’ on the same machine. We need to install and test the package on
each build machine to verify that the packaging process went OK. So, as root, do:

umount /home/itos

cd /export/home

mv itos itos_7-1_build
mkdir itos

chown user:group itos
chmod 775 itos

Now, while still root, install the package. Make sure no one is in the ‘/home/itos’
directory or the umount will fail. Finally, re-run the release tests to validate the release
package. When the release is validated, become root and restore the build directory as
‘/home/itos’:

umount /home/itos

cd /export/home

mv itos itos_7-1_install
mv itos_7-1_build itos

1.11 Configure the system

1.11.1 Setting up the command relay

During spacecraft integration and test, the ITOS normally is deployed on a closed network.
One 1TOS workstation will have two ethernet adapters: one one the closed network and one
on the open network. This workstation is used as a gateway through which spacecraft
commands and telemetry data may be relayed to and from stations on the open network.

The telemetry relay is established by a STOL procedure called ‘relay.proc’, which is
distributed with the 1TOS software.

The command relay is set up using inetd, so that the relay may be established by
connecting to the correct port on the gateway workstation, assuming that the command
destination port on the 1ITOS front end is available.

$Date: 2006/03/21 16:07:25 $



Chapter 1: Releasing ITOS 8

To set up the workstation for command relay, append the following to /etc/inetd.conf
on the gateway workstation:

#
# ITOS command packet relay between open and closed network
cmdrelay stream tcp nowait nobody /usr/sbin/tcpd /home/itos/bin/relay scat 6000

Add the following line to the /etc/services file:
cmdrelay 9040/tcp # ITOS cmd relay server

Finally, make sure that ‘scat’ appears in the hosts table as an alias for the actual SCAT
computer hostname. Remember to run make in /var/yp on the NIS master server if you
changed the hosts table.

Finally send a SIGHUP to the inetd process on the gateway computer. The command
relay now should be available.

$Date: 2006/03/21 16:07:25 $



Chapter 2: Patching ITOS 9

2 Patching ITOS

An 1708 patch consists of replacement programs, libraries, scripts, database inputs,
documentation, and so on, along with the modified source files that went into building
them. The source files are included primarily to facilitate debugging, and to allow the full
system to be rebuilt.

Here are the steps for making an ITOS patch:
Switch to the ‘~fixes’ source tree branch.
Document the patch.

List files for the patch.

Tag files involved in the patch.
Remove old files.

Export source files for the patch.
Build programs, libraries, etc.
Update the ‘Version’ file.
Package the patch.

© ® NSO w e

—_
e

Re-create the patch for other architectures.

—
—

Test the patch for all architectures.

—_
B

Install the patch on other systems.

2.1 Switch to the ‘-fixes’ source tree branch.

We commit patches to a CVS branch to the source repository, never to the trunk (on
which development is proceeding). Before you try this, read (at least skim) the CVS manual,
chapter 5, Branches.

If, and onmly if, this is the first patch to a release, you need to create a branch to
the source tree rooted at the release tag. To do this run ‘cvs rtag -b -r Release_x-y
Release_x-y_fixes src’, where ‘x-y’ is the release number for which we are creating the
patch.

Now you need to get the source from the branch. You can do this by cd’ing to a pristine
work directory and running

$ cvs checkout -r Release_6-12_fixes src
(Of course, replace 6-12 with your actual release number!)

Now you can modify the source to fix the bug and commit the changes back to the
branch.

2.2 Create the patch documentation

Add patch documentation to the release notes document ‘src/doc/itos-relnotes.texi’.

Documentation for newer patches should be added before those for older ones.

Remember that you need to modify ‘itos-relnotes.texi’ on the CVS branch for the
release you’re patching!

$Date: 2006/03/21 16:07:25 $



Chapter 2: Patching ITOS 10

In some cases you will need to include instructions for a patch installer that go beyond
the procedure given here. For example, if a patch requires that the database be rebuilt,
you must include a comment to that effect. Put any such comments between the patch
‘@subheading’ and the ‘@itemize’ list of fixes.

Q@heading Patch 1
Feb 28, 1998

Q@subheading New Features and Bug Fixes
Qitemize @bullet

Q@item The Sx interface (sxif) for the live_data_ingest (1ibldi) was not
handling discrete conversions correctly. This manifest in the
configuration monitor (eqn_cfgmon).

Qitem Added security to the invocation daemon (invoked). The program
will execute tlmClient, frame_sorter, tlmPlay, and dsp_pktdump;
and will kill only processes that it has started.

Q@item Removed obsolete call to dlopen() from wrapper library, and the
"so" element from the Wrapper structure.

Qitem Fixed two bugs in end-of-session handling: In reassembler, moved
frame vcid check to _after_ the check for E0OS. The previous
configuration prevented EOS detection on VCs other than 0. In
sorter, added proper call to pool_adj_ref_count() to
sorter_post_all(). Without this, some pools could have not been
freed as they should be.

Q@end itemize

2.3 List files for the patch

In ‘/home/itos’ on the main development machine, create a source manifest file contain-
ing a list of ‘src’ files involved in the patch. Names should be relative to the ‘/home/itos’
directory. This list always will include the release notes file, since it contains the patch
documentation. The file should be named ‘patch??.src’, where ‘7?7’ is the 2-digit patch
number. For example, the file ‘patch01.src’ might contain:

src/doc/itos-relnotes.texi
src/dsp/lib/sxif .c
src/util/invoked.c
src/lib/wrapper/wrap_annol2.c
src/lib/wrapper/wrap_ccsdstf.c
src/lib/wrapper/wrap_fep521.c
src/lib/wrapper/wrap_ftcp.c
src/lib/wrapper/wrap_itp.c
src/lib/wrapper/wrap_smex.c

$Date: 2006/03/21 16:07:25 $



Chapter 2: Patching ITOS 11

src/lib/wrapper/wrapper.c
src/lib/wrapper/wrapper.h
src/tm/pkt/Makefile
src/tm/pkt/frame_input.c
src/tm/pkt/frame_sorter.c
src/tm/pkt/frame_sorter.h
src/tm/pkt/reassembler.c
src/tm/pkt/sorter.c

In the same directory, also create a manifest containing the list all target files that
will make up the patch — executables, libraries, scripts, etc. Name it the same as the
source manifest, but without the ‘.src’ extension. For example, ‘patch01’ is created as a
companion to ‘patchO1.src’ and looks like this:

Version

patchO1
htdocs/itos-relnotes
htdocs/itos-relnotes.ps
1lib/1ibldi.a
1lib/1ibldi.so
bin/invoked
1lib/libtmw.a
1lib/libtmw.so
bin/frame_sorter

Our convention is to begin with the ‘Version’ file, followed by the manifest, and then
each target file, beginning the release notes targets. (Note that ‘htdocs/itos-relnotes’
is a directory.)

2.4 Tag files involved in the patch

If multiple developers are contributing to the patch, stop here until everyone reaches this
step. Then one developer should complete the patch procedure from here.

Use the source manifest file to tag the source files in the patch. From ‘/home/itos’ on
the development machine, run

xargs cvs rtag -r Release_6-7_fixes R_6-7_Patch_01 < patchOl.src
to tag source files for Patch_01 to Release_6-7, for example.

Notice the tag name convention: The form of the original tag for any release is
‘Release_x-y’. For each patch to that release, the form is ‘R_x-y_Patch_z’, where ‘x-y’
is the release version number, and ‘z’ is the patch number.

2.5 Remove old files

Given the source manifest ‘patchO1.src’ containing a list of sources involved in the
patch, run on the development machine in ‘/home/itos’

xargs rm <patchOl.src

to remove the old source files. This is necessary since ‘cvs’ will not export over a read-
only file, which include all source files in the source tree.

$Date: 2006/03/21 16:07:25 $



Chapter 2: Patching ITOS 12

2.6 Export source files for the patch

From /home/itos on the development machine, export the patch source files. The ex-
ample is for Patch_01 to Release 6-7.

xargs cvs export -r R_6-7_Patch_01 <patchOl.src

2.7 Build programs, libraries, etc

Move to /home/itos/src on the development machine and run ‘make install
>patchO01.log 2>&1’. This will build any programs, libraries, and so on affected by the
patch and install them in /home/itos/bin, /home/itos/lib, etc. Redirect the output into a
log file, as shown here for a Bourne-style shell.

2.8 Update the ‘Version’ file

Modify the file ‘/home/itos/Version’, so that it reflects the patch we’re making. The
recommended form for the contents of the ‘Version’ file is ‘Release x-y patchlevel z for
sparc-Sun0S-5.6’, where ‘x-y’ is the release version number, and ‘z’ is the number of the
new patch. The trailing text, ‘sparc-Sun0S-5.6’, gives the processor and operating system
for which the release was built, and will vary accordingly.

2.9 Package the patch

In /home/itos on the development machine, run something like
tar zcfT Patch_01_sparc-Sun0S-5.6.tar.gz patchO1

to create the patch file, ‘Patch_01_sparc-Sun0S-5.6.tar.gz’. The ‘patchO1’ is the
tarfile manifest we create earlier. The patch tarfile name is formed in a manner similar to
that used to name the release tarfile.

Also, only on the first system on which a particular patch is being created, create a
source patch. From ‘/home/itos’, run:

tar zcfT Patch_0O1_src.tar.gz patchOl.src
replacing the patch number, as appropriate.

Copy the patch file(s) to ‘/home/ftp/pub/itos/Release_vers’ on the ftp server, where
vers is the ITOS version number for which you’ve created the patch. If the directory doesn’t
exist, create it.

2.10 Re-create the patch for other architectures

We also need to re-create the patch on each architcture we support. Begin the process
by copying the manifest files from the patch to a development machine of the desired
architecture.

Note that on FreeBSD systems, shared libraries are required to have version numbers, so
you will have to add the appropriate version numbers to the names of any shared libraries
in the patch tarfile manifest.

$Date: 2006/03/21 16:07:25 $



Chapter 2: Patching ITOS 13

Now on the other build machines go to step 5 and follow the procedure back to this
point to re-create the patch for the target architecture.

2.11 Test the patch for all architectures

Test the patch on each supported architecture. If the patch is large, or touches on key
components, run the complete ITOS release test procedure.

If isolated problems are discovered during testing, and the patch needs to be modified,
commit the modifications to the fixes branch, and make the patch tag point to the new
revisions. To re-tag the patch do this:

xargs cvs rtag -F -r Release_6-7_fixes R_6-7_Patch_01 < patchOl.src

The patch tag will now point to the latest revisions on the patch branch. Then go to
step b of the patch procedure to re-build and re-test the patch.

2.12 Install the patch on other systems

Patches must be installed in numerical order, and patches must not be skipped. You
must, for example, install patch 3 after patch 2, and you must install patches 1 and 2 before
installing patch 3.

On any test conductor workstation, ftp to the ftp server and retrieve the patch file into
‘/home/itos’. Then unpack the file with the command ‘tar zxpmf Patch_xx.tar.gz’,
where xx is the patch number.

The tar option ‘p’ preserves the permissions and the option ‘m’ updates the modification
time.

Finish up by performing any steps listed in the ‘Special Instructions’ section of the
patch document, if any.

The patch now is installed.

$Date: 2006/03/21 16:07:25 $



Table of Contents

1 Releasing ITOS............... ... 1
1.1 Make sure everyone knows a release is about to occur...... 1
1.2 Make sure everything is checked in........................ 1
1.3 Update the release notes . .................oooiiiia... 2
14 Tagtherelease......... ... iiiiiiiiii . 2
1.5 Save the old /home/itos ................. .. ... ... .. ... 2
1.6 Export into /home/itos/src............... ... .. ... .. 3
1.7 Build and test in /home/itos................ ... ... ... ... 3
1.8 Apply last minute patches ............................... 3
1.9 Package therelease.......... ... . ... .. i, 4

1.9.1 Make the Source Tarball ........................ 4
1.9.2 Make a Solaris Package ......................... 4
1.9.3 Make a Red Hat Linux Package.................. 5
1.9.4 Make a FreeBSD Package ....................... 6
1.10 Installtherelease ...............ciiiiiiieeein, 6
1.11 Configure the system ................ ... ... .. .... 7
1.11.1 Setting up the command relay .................. 7

2 Patching ITOS ............ ..., 9
2.1 Switch to the ‘-fixes’ source tree branch.................. 9
2.2 Create the patch documentation.......................... 9
2.3 List filesfor the patch ...... ... ... . ... .. ... ... .... 10
2.4 Tag files involved in the patch........................... 11
25 Removeoldfiles......... ... 11
2.6 Export source files for the patch......................... 12
2.7 Build programs, libraries, etc............................ 12
2.8 TUpdate the ‘Version’file............ .. ... . ... ....... 12
2.9 Packagethepatch.......... ... . ... ... ... 12
2.10 Re-create the patch for other architectures.............. 12
2.11 Test the patch for all architectures...................... 13
2.12 Install the patch on other systems...................... 13

$Date: 2006/03/21 16:07:25 $



